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1.0    INTRODUCTION 

1.1    Objective 

Because Computational Fluid Dynamics (CFD) can treat the nonlinear phenomenon 

in high-Reynolds-number flow simulation with the acid of high speed digital computer, 

CFD are becoming in the matured stage for both physical research problems and practical 

engineering problems, it is becoming an integral part of the study of fluid mechanics and 

the aerodynamics design process [39]. Research topic on CFD are generally directed 

toward solving problems for understanding flow physics, treating realistic configurations, 

maintaining good computational efficiency and stability, postprocessing of the computer 

results, and maintaining user friendliness. Many researchers have been searching for 

methods to simulate flows around very complex geometries, such as the integrated space 

shuttle configuration [Ref. 21], and full aircraft configurations [Ref. 25], which depends 

on the use of different technologies developed for CFD and other relative fields, such as 

grid generation, flow solver, and flow visualization. 

Currently, with limited computation resources, the methods of treating realistic 

configurations and increasing accuracy of the numerical simulation are one of the most 

important tasks in the computational fluid dynamics research and practical engineering 

application. For a single body shape, as shown in Figure 1 for space shuttle orbiter, the 

use of a single body-conforming curvilinear mesh leads to the most efficient solution 

procedure. However, for more complex shapes, especially for complex three-dimensional 

configuration, as shown in Figure 2, for a simplified space shuttle configuration, it is quite 

difficult to generate a single body-conforming well-clustered curvilinear grid that is not 

overly skewed and has smooth variation. On the other hand, the accuracy enhancement is 

another obstacle in the computational fluid dynamics. No matter what discretization 

methods would be used, finite difference or finite volume, the solution of the partial 

1 



Figure 1. Simple geometric configuration of orbiter 

Figure 2. Complex space shuttle 



differential equations of fluid motion requires that the computational domain and dependent 

variables be represented on a network of discrete points. The distribution of these points is 

influenced by the choice of the coordinate system, the order of the numerical 

approximation, and the location of strong geometric and flow field gradients. As long as 

the discretization method is used, the solutions of the differential equations become more 

accurate as the number of the grid points are increased. But because of the limitation of 

computer resources, it is necessary to improve the grid resolution without increasing the 

number of grid points. 

Many different methods have been developed in grid generation and discretization 

to improve the grid resolution. Grid adaptation is one of the solutions. Local grid 

resolution can be improved by adopting solution-adaptive grid technique without increasing 

the total number of grid points. Another method is local grid enrichment In addition to the 

original grid, locally defined finer grid is created and overlapped or overlaid on the region 

of interest of the original grid. 

For geometry imposed complex flow fields, composite structured grid schemes and 

unstructured grid schemes are two major approaches for nonlinear simulation. For the 

most part, the unstructured grid approaches have come from the finite element community, 

although finite difference and finite volume methods can be written for an unstructured 

grid. Both approaches require a more complex data-handling program than that required by 

a simple single-structured grid, and both approaches have their strengths and weaknesses. 

It seems that unstructured grid methods are generally considered to be more versatile and 

easier to adapt to complex geometry, but it has difficulty in treating viscous flow problems, 

while composite structured grid methods are generally considered to use more efficient 

numerical algorithms, require less computer memory, and can handle viscous flow 

problems without difficulty. The best approach is still not resolved, but hybrid schemes, 

which use is structured grid in most areas and only unstructured grid in limited regions, 

have already appeared [Refs. 40 through 42], it incorporates the best features of both 



schemes, and will certainly grow in popularity and ultimately prove to be the best for 

treating complex configurations. 

Composite grids use more than one grid to mesh an overall configuration with each 

individual grid of the system patched or overset together. Patched grids are individual 

meshes that are joined together at some common interface plane, but it is still relatively 

difficult in grid generation because various interfaces have to be defined and grids have to 

be generated with both inner and outer defined boundary surfaces. Overset grids do not 

require a common interfaces, but rather, a simply superimposed or partially superimposed 

mesh is needed to cover the region of interest, and to provide the means of matching the 

solutions across boundary interface. Without any special way of grid connection or 

common interface, the grid generation is greatly simplified since the hyperbolic grid 

generation technique may be used. 

The composite overset or Chimera method can provide the flexibility to employ 

boundary conforming grids on component parts of the geometry, define the mesh 

selectively in the regions of interest, and permit different flow models to be solved on each 

grid. In this discretization process, each grid in the system is ordered and is thus suitable 

for efficient finite difference solutions on vector computer and any single-grid code. The 

primary objective of present study is to develop a composite overset or Chimera code 

which can handle general 3-D configuration problems. 

For a complex geometric configuration problem, to generate composite overset 

grids, and construct required data structure for Chimera scheme is not an easy job, and it is 

more costly to run a three-dimensional Chimera scheme for Navier-Stokes equations. 

Therefore, before running the Navier-Stokes solver, it is very important to check Chimera 

data structure to make sure that all the Chimera overset grids connections are working 

correctly. Therefore, besides developing a Chimera connecting code, the other purpose of 

present work is to develop a simple numerical procedure in three dimension, which can 

easily fit in Chimera scheme and give an initial inviscid flow solution.  These inviscid 



results from the simple flow solver can be used to check the Chimera scheme, and to be 

used as the initial results of Navier-Stokes solver. 

1.2    Literature Review 

With the aid of supercomputer, CFD researchers start to calculate complex 

configurations, e.g., Meakin, et al. [Refs. 17, 18, and 19], used overset grid method to 

simulate transient flow field by solving Navier-Stokes equations for integrated space shuttle 

vehicle configuration during ascent and SRB separation. Buning, et al. [Refs. 21, 22 and 

23], used an overset grid method to solve the thin-layer Navier-Stokes equations for the 

integrated space vehicle launching configuration. Flores, et al. [Ref. 56], solved the 

Navier-Stokes equations for a transonic flow by using a patched grid method. Obayashi 

[Ref. 57] solved Navier-Stokes equations for a wing-fuselage-tail geometric configuration 

by using a single grid system, and Jameson, et al. [Ref. 58], solved Euler equations for 

Boeing 747-200 using an unstructured grid. 

Of these calculations of complex geometries, the grid system can be roughly 

divided into the following types: 

• single grid 

• composite grids, which can be divided into: 

- patched grid 

- overset grid 

- adaptive grid 

For a single grid, it is simple to solve control equations but it is difficult for grid 

generation for a complex geometric configurations, and it may contain overly skewed 

meshes, which could give an inaccurate solution. On the other hand, using a single grid 

could not refine the grid selectively, therefore, it may require more grid points than a 



comparable multiple grid approach. Comparing with a single grid, a multiple grid method 

is flexible, but it also demands a significant amount of computer resources and different 

techniques, which may involve computational domain-decomposition, connection or 

communication between each grid and composite grids data management 

Domain-decomposition techniques subdivide the computational domain into 

simpler subdomains which admit a more easily constructed mesh. Several strategies have 

been explored to subdivide the domain and establish communications among the 

subdomains. One group of approaches, the grid-patching or zonal methods, uses common 

or shared boundaries and another uses embedded or overset grids to subdivide the domain. 

The work of Rubbert and Lee [Ref. 56] is typical of the methods which construct a global 

mesh from subdomains which share common subdomains. They generate a global mesh 

by solving grid-generation equations on all subdomains simultaneously and by requiring 

that the grid lines be continuous across subdomain boundaries. A difficulty with this 

approach is that irregularities which occur in corners and along boundaries impose 

constraints on the algorithm used to solve the flow equations. Lasinski [Ref. 43] takes can 

alternate approach and solve for the flow field on each subdomain separately with 

communication among the grids established by the transfer of boundary data. In their 

approach, the patches overlap one point with common points on the boundary to obviate 

interpolation for boundary data. Hessenius and Pulliam [Ref. 44] have modified the 

approach. Rai [Ref. 45] further generalized the method to admit independent grids in each 

subdomain. Communication across grid boundaries is accomplished by means of special 

difference formula at the boundaries which maintain conservation properties across the 

subdomains. Similar methods have been developed by Miki and Takagi [Ref. 46}. Holst, 

et al. [Ref. 47] have applied the technique to large 3-D grids. 



The grid-embedding or oversetting techniques do not require common boundaries 

between subdomains, but rather, a common or overlap region is required to provide the 

means of matching the solutions across boundary interfaces. The usual procedure uses 

interpolations of embedded boundaries to provide the necessary communication among the 

grids. There are several implementations of the method. Steger, et al. [Ref. 33] and 

Benek, et al. [Ref. 4], developed a "Chimera" scheme in three dimensions for the solution 

of both a linearized flow model or Euler equations. Dougherty [Ref. 38] has extended the 

grid-embedding technique to time-dependent motions. Atta {ref. 48] applied this method to 

solve the full-potential equation in two and three dimensions using a separate implicit 

solution algorithm for each grid. Fuchs [Ref. 49] employed this approach to internal 

flows, and Rai {Ref. 50} used a combination of patched and overset grids to solve rotor- 

stator interaction problems. 

The second technique, grid-adapting methods, forces the mesh to evolve with the 

solution of the flow equations, the advantage of this method is that the initial mesh does 

not need to anticipate accurately all regions of large flow gradients, thus it can make the 

most efficient use of available mesh points, and reduce the grid-generation effort by 

automatically clustering grid points to regions of high gradients. Gnoffo [Ref. 51] models 

the mesh as a network of springs whose constants are determined from the flow gradients. 

Nakahaski, et al. [Ref. 52], extend these methods to both steady and unsteady flow 

problems. Ghia, et al. [Ref. 53], used both the grid-evolution equation and the flow 

equation by requiring that the coefficient of the convective term in the flow model be 

minimized. Brackbill and Saltzman [Ref. 54] used variational methods to produce grid- 

evolution equations. Berger [Ref. 56] developed a dynamic grid refinement technique by 

successively embedding finer grids to resolve flow gradients. 



2.0   CHIMERA APPROACH AND GRID TOPOLOGY 

2.1    Introduction 

For complex geometries, grid generating itself is not an easy task. Though it is 

possible to generate a single grid for a complex geometry, the resultant grid is most often 

overly skewed in certain directions or regions, or doesn't have the needed clustering to 

resolve the flow field in regions of rapid change. One good method to overcome this 

difficulty is to divide the complex shape into several simple ones and generate the grid 

about these simple shapes, then overset them one on the top of the others. With using 

inter-grid communication in the flow solver, the overset grid can be used to solve complex 

geometric problems. 

The overset grid approach used in this research was first devised by Steger, and his 

colleague [Refs. 2 through 5, 10, 16, 21, 22, and 33, etc.], and given the name, the 

Chimera approach, after the Greek legendary creature that was compounded of 

incompatible parts which signifies that the Chimera approach can take incompatible grids 

(i.e., no common boundaries between different grids) and 'glue' them together to be solved 

by the flow solver. Because the Chimera approach does not require common boundaries 

between component meshes, complex grid generating can be replaced by a combination of 

a series of simple ones. Therefore, it provides the flexibility to employ boundary- 

conforming grids on component parts of the geometry, to change grids of some component 

without changing other component grids. Furthermore, it is also easy to refine the mesh 

selectively in the regions of interest without regenerating the whole grid for the complete 

configuration. Another feature of the Chimera approach is that the flow solver simulation 

is done in sequence for component grids, which offers a saving in memory usage for 

solving flows around a complex geometry since it only requires memory enough to handle 



the largest component grid, and it is also possible to use different computers to update the 

results on each grid if a multitasking computer processor is available. 

In this discretization process, each individual grid in the system is well ordered and 

thus suitable for efficient finite difference solution using highly vetorized computers and 

any available single-grid code. It is also possible to use different models or schemes with 

different time steps, etc., for different components, which opens many possibilities for 

enhancing the rate of convergence. 

The Chimera method has been demonstrated for a wide variety of aerodynamic 

applications including, among many others, simulations about the integrated space shuttle 

vehicle for various ascent conditions, [Refs. 21 through 24], transonic computations about 

the entire F-15 aircraft with pylongs and stores {Ref. 12], simulation of the viscous flow 

about the F/A-18 at high angles of attack [Ref. 27], and numerical studies of a delta wing 

platform with multiple jets in ground effects [Ref. 7]. In addition, overset grid techniques 

represent a powerful tool for analyzing problems involving relative motion between vehicle 

components. Such applications have been carried out time-accurately in three dimensions 

for the separation sequence of the space shuttle solid rocket boosters [Ref. 16.17 and 19], 

and aircraft store separation sequences [Ref. 10,11 and 19]. The Chimera method has also 

been successfully applied to many nonaerodynamic problems, such as applications in 

biomedical fluid mechanics [Ref. 15], environmental flow simulations [Ref. 18], and the 

high speed train project in Japan [Ref. 13]. 

Although there are many advantages to the overset mesh method, there are also 

disadvantages which may influence the method widely use. Because interpolation points 

and blanked points must be located and labeled for special treatment, a massive data base is 

needed. These schemes are more complex relative to using a single grid scheme and data 

interpolation also can cause inaccuracies such as local loss of numerical conservation of 

fluxes. For unsteady problems with relative motion between grids, the interpolation data 



and index need to be calculated at each time step, therefore, it would be more expensive 

than a single grid scheme. 

Although there are many applications of the Chimera method, the successful code is 

still very limited, especially for viscous flow problems. A very good code PEGSUS 

(versions 2.0, 3.0 and 4.0), which was developed by CALSPAN of AEDC, has been 

widely used by Chimera group researchers, and has many successful applications [Refs. 

21 through 23], but it still has some weaknesses needed to overcome, for example, as 

shown in Figure 3, the space above a concave body surface is covered by two overset 

grids. The values on the boundary of the solid line grid are interpolated from the solution 

of the dashed line grid, and the values on the boundary of the dashed grid are interpolated 

from the solution of the solid line grid. For PEGSUS code, the points below the surface 

grid are interpolated from the solution of solid line grid. For PEGSUS code, the points 

below the surface grid are considered inside the surface, so these points are blanked out. 

For viscous flow problems, the grids are very fine near the surface, thus, up to 10 points 

below the surface grid could be blanked out. No information can be obtained for these 

points. The other limitation is for high Reynolds number viscous flow above body 

surface, as shown in Figure 4, in the region very close to the surface, especially in the 

sublayer region of the boundary layer, regular tri-linear interpolation method cannot give 

satisfied results, because the value of boundary point of the dashed line grid is interpolated 

from the solutions of the solid line grids, which are not at the same distance from the 

surface. This is because for high Reynolds number problems, the velocity profiles have 

very high gradient in the surface normal direction; a small difference in the surface normal 

direction can bring out a big difference in velocity value, so the normal interpolation 

method needs to be modified. Therefore, it is necessary to develop new, more efficient 

methods and logic, which can handle more general and complex problems, such as viscous 

flow problems. 
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Figure 3. Concave surface grids 

Figure 4. High Reynolds number boundary layer flow 
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2.2     Chimera Method 

The grid embedding has two major parts: decomposition of the domain into 

overlapping subdomains and communication among the subdomains. Each subdomain is 

chosen to lessen the effort of generating an acceptable mesh, each of these meshes 

represents a separate and independent grid generation. To increase the flexibility in the 

domain decomposition, it is necessary to remove the regions of a mesh containing an 

embedded grid from that mesh, that is, an embedded mesh introduces a 'hole' into the 

mesh in which it is embedded. Because appropriate boundary values are interpolated from 

the mesh in which the boundary is embedded, and these parts do not enter into the solution 

process, inter-grid communication is simplified through the grid boundaries. Therefore, 

the Chimera procedure naturally separates into two parts: (1) generation of the composite 

mesh and associated interpolation data and (2) solution of the flow equations on the 

composite and interpolation data mesh. Each part is embodied in a separate computer code. 

The first code takes the independently generated composite mesh as input and automatically 

constructs the composite mesh as an output, which requires establishment of the proper 

lines of communication among the grids through tri-linear interpolations within the 

overlapping regions to determine outer boundary point properties for each grid. In addition 

to the outer boundary point communication, holes arise whenever the solid surfaces 

contained by one grid are also contained within other grids, and the hole requires boundary 

condition; therefore, it is necessary to identify points and locate points from which 

boundary values can be interpolated, then evaluate interpolation parameters. Because the 

hole point and hole boundaries point are not at the computation domain, they are imposed 

by blanking out the control equations within the solution matrix and directly substituting the 

boundary condition. A detailed discussion of the methodologies used to tag hole boundary 

points and outer boundary points is given in following sections 2.2 and 2.3. 
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Once the subgrids were constructed, and the interpolation coefficients were 

computed and stored by the assembly code described above, the second code can use the 

stored interpolation coefficients to provide boundary condition for each grid, and solve the 

appropriate flow equation on each grid with single grid solver. A detailed discussion is 

given in Section 2.4. 

2.2.1  Hole Creation 

Because each component mesh is generated independently, complications 

frequently arise when the grids are embedded. For example, points of an enclosing mesh 

Gn, may be found to lie within a solid boundary contained within an embedded grid 

G1+1; , such points lie within the solid boundary and outside the computational domain, 

therefore, must be excluded from the solution process. Thus, the embedded mesh G1+u 

introduces a "hole" in G,;. The only computational requirement is that there remain a 

sufficient overlap to support an interpolation for the outer boundary of G1+1>j from points in 

There is a two-step procedure in finding the hole points as well as the hole 

boundary. First, (1) find a geometric center of embedded body surface as a temporary 

origin, say P0 (2) find the Rmax and Rmin as the maximum and minimum distances from 

P0 to points on embedded body surface. All the points that fall outside of the larger sphere 

with radial of Rmax are considered to be field points. All the points that fall inside of a 

smaller sphere with radial of Rmin are considered to be "hole" points, those points that fall 

between the two spheres need a more accurate method to tell whether or not a point is a 

hole point. To avoid unnecessary confusion in a three-dimensional case, a two- 

dimensional case is presented to illustrate the idea of the hole searching procedure. In 

Figure 5, construct outward normal to the initial hole boundary at each point defining the 

surface, C. Test the magnitude of f, the position vector relative to P0. For every point P 

13 



Figure   5.    Normal vector to the initial hole boundary 
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of G, i; if the |r| < R^ , P may be inside C. So, form N • Rp where N is the unit 

normal at the surface point, Pc, the closet point to P, and Rp is the position vector of P 

relative to Pc; if N-Rp < 0, P lies within the hole and the flag variable, IB LANK, is set to 

zero, otherwise, P is outside the hole and IB LANK is set to 1. The IBLANK variable is 

used by the flow solver to determine whether a point should enter into the solution process 

or not, as illustrated by the equation below: 

AAQ = IBLANK * RHS 

where A is the coefficient matrix,  AQ is the change in flow solution, and RHS is the 

source term. Thus for the hole points, the above equation reduces to 

AQ=0 

and the values of the variable at the hole points are not changed in the solution process. 

The points of G,; within a hole are excluded from the solution and are not usable as 

boundary points. Therefore, additional points of G,; are identified as hole boundary or 

fringe points. After the hole points are found, the hole boundary points or fringe points 

can easily be located by searching the IBLANK values of neighboring points. Figure 6 

illustrates the construction of fringe points. The procedure is to examine the search stencil 

for each point, P, in Gx i at which IBLANK=1; if one of the nearest neighbors is a hole 

points, P is a fringe point. The indices of the fringe points are added to a list of boundary 

points which require interpolation data. The values of the unknowns at these boundary 

points are interpolated from the embedded mesh, Gu+I . 

2.2.2 Searching for Interpolation Elements 

Communication among the grid is achieved by interpolation of boundary values 

from the grids in which the boundaries are contained. Care must be taken in the application 

of the method to ensure that the interpolated point lies within this cell. 
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Figure 7.   A sphere surface covered by a single piece of grid. 
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Figure 8. The whole sphere surface covered by two pieces of grids. 
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Figure 9. The whole sphere surface covered by four pieces of grids. 
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For the overset grid schemes interpolation is generally needed to update boundary 

points, and interpolation requires routines to seek out nearest points (or cells) to interpolate. 

Finding these points can be costly and prone to error. Moreover, as Figures 7, 8 and 9 

indicate, even for the nearest points in space, it is not necessarily that the best interpolation 

results are obtained. 

There are two simple methods which can be used to find the cell which contains 

given boundary grid. One of the methods is developed in the physical coordinate x,y,z 

space, which is called "stencil" method. The other method is developed in the 

computational coordinate £, T|, £ space, which is called Jacobin matrix method, because it 

needs to use Jacobin matrix to calculate the interpolation coefficients. For our case, the 

Jacobin matrix method is more efficient than "stencil" method, because the Jacobin matrix 

was calculated in other subroutines in the same program. 

For more than two mesh problems, it is possible that the boundary of each mesh is 

overlapped by other two or more meshes, which means for the same point of a given 

boundary, its values can be interpolated from different meshes, therefore, it is necessary to 

introduce new logic and a series of parameters to judge for which grids the interpolated 

boundary data are best; therefore, the data structure becomes very complicated. On the 

other hand, the simple logic can fail because of the need to introduce a starting point, which 

is not far from the destination point and in the same grid. For the general multiple overset 

grids, these conditions are not always satisfied. 

2.2.3 Interpolation Points 

Because the separate grids are to be treated as independent entities, boundary 

conditions must be supplied to each. The boundary conditions of the differential equations 

which model the flow provide data only at the boundaries of the computational domain. 

Thus, other data must be obtained for the subdomain boundaries which are not coincident 

with those of the computational domain. Because the subdomain boundaries typically lie in 
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the interior of the computational domain where the differential equations are valid, it seems 

appropriate that the solution of these equations should provide the necessary boundary 

data. Appropriate boundary values are interpolated from the mesh or meshes in which the 

boundary is embedded. Thus, it is necessary to find the interpolation points or cells on the 

embedded mesh from which the boundary values are interpolated. Once these points or 

cells are found, their pointers are added to a list of such points to be used by the flow 

solver to update the variables at the hole or boundary points. There are several different 

procedures to locate the points in the embedded mesh which would be best for interpolation 

boundary point. In general, the closet points in the embedded mesh would provide the best 

interpolation data for the boundary points, but for some special cases, it is necessary to pay 

special attention in selecting the interpolation points. For viscous flow problems, in the 

region very near the surface, the closest points would not necessarily provide the best 

interpation data, because the flow properties change very fast in the surface normal 

direction. A small distance in this direction would bring a big change in the flow 

properties. Therefore, we have to find those points with the same height as the hole or 

boundary points, and use them as interpolation points. Because these points may not be a 

real grid point in the physical space, it is necessary to find a method to use the results of 

these real grid points to get the interpolation data. 

2.2.4 Interpolation Methods 

Because the subdomain boundary is in the interior of other computational domain 

where the differential equations are valid, it is appropriate to use the solution of these 

equations to update the necessary boundary data. There are several approaches to obtain 

these boundary data, and all of them involve some form of data interpolation from one 

mesh to another mesh. 

We can use tri-linear interpolation to update the values of boundary points for a 

three-dimensional problem. The tri-linear interpolation which has the form: 
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A = <Xi + a2$ + a3r| + a4; + a5Crt + a6r^+a7^C +CC8£T|C 

where 0<£,rj,£ < 1   are the coordinates of the point to be interpolated and the o^-cXg 

depend upon the function values at the points forming the interpation cell. 

In general, the tri-linear interpolation can give good interpolated results. But in the 

region very near the body surface with very fine grids in the normal direction, this method 

may give wrong results because of geometric and physical reasons. Because different 

interpolation methods need different kinds of data structure, it is necessary to transfer 

different kinds of data structure into a standard data structure for easy data management. 

2.2.5 Data Structure 

A Chimera method requires the management of a large amount of grids, solution 

data and interpolation relationships, which consist of a list of every boundary point in each 

grid which receives interpolated information from other grids, a list of every grid element in 

each grid which provides interpolated information to boundary points, a list of all points in 

the composite grid that are hole and boundary (i.e., "blanked") points, and the pointer from 

boundary points to the grid elements which provide the boundary point with interpolated 

solution data. Additional information, such as grid-storage location, number of points in 

each coordinate direction, location of interpolation stencils, location of interpolation 

coefficients, location of interpolated boundary data, and location of hole or excluded 

points, should also be included. Therefore, it is necessary to keep track of the storage 

locations of the coordinates of each grid, solution data on each grid, all of the interpolation 

information, and develop a good management method to transfer all these data to the user in 

an automatic manner. 
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Because most of these data are stored in lists, connections among the data are made 

through the use of linked lists and pointer. It is necessary to store the position of the first 

element (a pointer) in each grid and the number of points in each coordinate direction on 

each grid to locate the coordinates of any points. 

2.3     Grid Generation and Composite Grid 

Although the use of overset-grid approach reduces the complexity of grid 

generations, the task of generating a satisfactory body conforming grid about a three- 

dimensional complex geometric body is still not easy. In general, the grids must not be too 

distorted. They should have smooth variation, and should be clustered to flow field 

regions, typically near boundary surfaces. Moreover, the grids should be generated in an 

automatic manner that requires a minimum of user input 

Because of the application of boundary conditions can be simplified in finite 

difference calculation if grid lines coincide with boundary lines, body conforming 

curvilinear grids are often used in finite different flow field simulation. One approach for 

generating body conforming grid is to solve a set of partial differential equations with a 

series of monotone variation level lines £(x,y,z), T|(x,y,z) and C(x,y,z) as a solution of 

these partial differential equations. The values of these variable £,r],and£ are user- 

specified on the boundary surface, and constraints expressed as differential equations are 

used to develop the grid away from the boundaries. The most popular approaches require 

the solution of a set of elliptic equations which satisfies the maximum principle. For 

external aerodynamics applications, the placement of the outer boundary curve will not 

have to be precisely specified, especially for Chimera overset grid approach. Solving a set 

of hyperbolic or parabolic governing equations is, however, more powerful and efficient. 
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The governing grid generation equations are determined by the differential 

constraints     of    two     mesh     line     orthogonality     relations     between 

% andr| and between r\ and C,, 

W° 

v^ = o 
and a user specified mesh cell size constraint 

d(x,y,z) 

aflUQ 
= AV 

where the r is the position vector, (x, y, z). The grid is obtained by first defining a surface 

grid, then the governing equations have to be solved by marching outward in the normal 

direction from specified distribution of points on the inner body boundary, under the 

constraint of the two orthogonal relations and the user specified spacings or volumes. 

Details of the hyperbolic grid generation procedure can be found in Ref. 55. 

In the overset mesh technique a major grid stretches over the entire field. The major 

grid might be a simple rectangular grid or a grid generated about a dominant boundary or 

body surface. Minor grids are generated about remaining portions of the body- 

configuration or any other special feature such as an intense vorticity region. The minor 

grids are used to resolve features of the geometry or flow that are not adequately resolved 

by the major grid. They are generated somewhat independently of the major grid and are 

overset on top of the major grid without requiring mesh boundaries to joint in any special 

way. Overall, the effect of one grid is imposed upon the other by means of boundary data 

that is interpolated back and forth as the iterative solution process of solving the difference 

equations on each grid proceeds. The minor grid outer boundary data comes from the 

major grid solution, not from a far field boundary condition routine. 
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As the separate grids are to be treated as independent entities, boundary conditions 

must be supplied to each. The boundary conditions of the differential equations which 

model the flow provide data only at the boundaries of the computational domain. Thus, 

other data must be obtained for the subdomain boundaries which are not coincident with 

those of the computational domain. Because the subdomain boundaries typically lie in the 

interior of the computational domain where the differential equations are valid, it seems 

appropriate that the solution of these equations.should provide the necessary boundary 

data. Appropriate boundary values are interpolated from the mesh or meshes in which the 

boundary is embedded. 

Finding a grid element which can provide interpolated information to a hole 

boundary point is a necessary but not sufficient condition for an interplation to be 

considered satisfactory. For example, a grid which is to supply interpolated information to 

a boundary point may itself be boundary point which is updated through interpolation. 

Most of the information used to update the original boundary point will come from 

interpolation rather than directly from the flow solution. This close coupling of boundary 

points can result in poor global convergence. Therefore, in the grid generation and 

composite grids, a sufficient overlap region (at least two points) must be provided and in 

Chimera connecting code, a simple strategy is added to not allow boundary points to be 

updated by grid elements which are themselves comprised of boundary points. 

2.4     Solution Procedure 

The Chimera approach has the advantage that a flow simulation code developed for 

a single general curvilinear grid can be readily adapted for composite overset grids. It is 

easy to write an outer loop control program that calls in grids and interface routines and 

provides logic to set communication relations between the grids. At each time step, a grid 

and its data are fetched from an isolated memory device into the working memory. 
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Boundary interface arrays that store grid interconnect data, QBC , are also brought in. The 

QBC arrays hold overset-grid boundary values for the current grid which are supplied from 

the other grids. The solution on the current grid is then updated or advanced in time using 

the flow algorithm, the QBC interface boundary values, and the usual boundary condition 

routines (tangency) that are applicable. Overset boundary data that the current grid sends to 

other grids are then loaded into QBC and all the arrays are sent back to the isolated large 

memory. The next grid is then fetched and so on. 

Because of the above reasons, the intention is to build a simple solver which can be 

used for quick embedment within the Chimera framework, check outputs, give good 

guessing, diagnostics, etc., as well as for use with an optional fortified approach. These 

numerical algorithms for inviscid flow simulation are efficient, and simple and robust so as 

to minimize the amount of engineering man hours to obtain an initial solution. Therefore, a 

formulation for the steady inviscid flow, in terms of primitive variables of the original 

Cartesian velocity variables is described for body fitted general curvilinear coordinates. 

The details of the formulation are given in the later chapter. A limited number of 

calculations have been undertaken to validate the formulation. 
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3.0 FLOW SOLVER 

3.1    Subsonic Steady Inviscid Nonconservative Formulation 

Continuity: 

with 

ux + vy + wz = -ti 

■d = (upx +vpy + wpz)/p 

Vorticity Definitions: 

Ul = Wy - vz 

U2 = uz - wz 

u)$ = vx - uy 

Written as a system of first order equations 

/0    0    ix 

0-10 
1     0     0 

Vo   o   o/ 

or 

Äqx + Bqy + Cq2 = g 

1      0       0 
Multiply by D^A1, with Dx = ( 0    -1     0 

0     0-1 
then 

(2) 
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or 

Aiqx + Bxqy + Ciq2 = /i 

Each matrix. A\. B\. and C\ has real eigenvalues. Moreover, the matrix aA\ + 

bB\ + cC\ has distinct real eigenvalues 

A(oi4i + bBx + cCi) = -a,±\Za2 + 62+c2 

and a complete set of eigenvectors must exist (Mathematica could not find them. 

so they will need to be worked out ) so the formulation is applicable to general 

coordinates as will be noted later. 

-1 0     0 \ 
If Eq.(l) is multiplied by D2B\ with D2 = \   0 1     0      then 

0 0-1/ 

and Eq.(4) is similar to Eq.(3). 

-1 0     0' 
If Eq.(l) is multiplied by #3C', with Dz = |   0 -10] then 

0 0     1 
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For symmetry, add Eqs.(3). (4) and (5) 

1        1 1\    /Ur\ (-1      1       0\/uy\ /-l        0        1\    (UZ 

1-1      0    \   I  vx      +       1      1      1    ]   \   vy      +       0      -lit;, 
1     0     -1/   \ti/x/      V 0     1-1/   V^y/       V  1       11/   Wz 

CJ3 — o>2 — t? 

=  |   Wi - UA} - T? 

^2 — CJi — l9 

(6) 

or 

A& + B9-y + Cqz = f (7) 

Each coefficient matrix has real distinct eigenvalues and the linear combination 

aA + bB + cC has the distinct real eigenvalues 

X{aA + bB + cC) = -a-b-c, ±y/3(a2 + b2 + c2) (8) 

and again a complete set of eigenvectors must exist. 

3.2 General Coordinates 

Let f = £(x, y, 2), 7/ = T/(X, y, 2), and C = C(*i y> A then Eq.(7) becomes 

(£XA + £y# + &C)& + (VxA + T7yB + ^C)9„ + (CxA + CyB + (zC)qc = f     (9) 

All combinations of eigenvalues follow from Eq.(8). 

Rewrite (9) as 

Aqt + Bqv + Cqc = f (10) 
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where 

A- Zx+Zy 
Zx + Zz 

Zx+Zy 
'Zx + Zy ~ Zz 

Zy+Zz 

Cx+Cz 
£y + G 

"£x ~Zy + Zz 

and 

Here 

T)x-Vy- Vz Vx +Vy Vx + Vz 
B =   \        Vx+Vy -Vx + Vy~Vz Vy + Vz 

Vx + Vz Vy+ Vz ~Vx -Vy + Vz 

C = 
Cx-Cy-Cz 

Cx+Cy 
Cx + Cz 

/ = 

Cx+Cy 
-Cx + Cy ~ Cz 

Cy + Cz 

( W3 — IJJ2 — 1? 

U>\ — W3 — 7? 

Cx+Cz 
Cy+Cz 

"Cx "Cy+Cz 

OJl = (fytü$ + Vy^v + Cy^c) - (Gu€ + VZVT, + Cz^c) 

^2 = (ZzU£ + TfcU,, + CzU<) - {ZxWZ + »7xWf| + Cx™<) 

^3 = (£*^ + VxVv + Cx^c) - (£y«€ + %«, + Cy"c) 

1? = 
(^Pg+y^ + Wpc) 

17 = C*t* + & + (zW,       V = T]XU + T}yV + T]ZW.      W = Cx« + CyU + Cz™ 

3.3 Numerical Algorithm 

Euler Implicit {h = At or relaxation factor): 
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(/ + hÄn6i + hBn6r, + hCnS<:)Aqn = -h[(Än6z + fT^ + Cn6c)q
n - fn]     (11) 

where Aq" = <T+1 - <T 

Approximately factored in ADI-like fashion 

(I+hÄn6z){I + hBn6r))(I + hCn6t)Aqn = -h[(Än8z + Bn6r) + Cn6<)qn-fn] (12) 

Algorithm form: 

(/ + hÄnS^)Aq' = -/i[(in^ + Bn6n + Cn6<)qn - fn] 

(I + hBn6v)Aq" = A<f 

(I + hCn6(:)Aqn = Aq" (13) 

q"*1 =qn + Aqn 

With smoothing, above equations become: 

(I + hAn6f: - Ä6i(AV)^)Ag* = -h[(ÄnA^ + BnAv + CnAc)<f - fn) 

-hee[(AV)l + (AV)2 + (AV)2]«f (14) 

(/ + hBn6v - he^AV^Aq" = Af 

(J + hCn6< - /i€i(AV)()Af = Af * 
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q«+l = qn + Aqn 

The left hand side of first 3 equations of (14) can be written as: 

[/ + hÄn8i - het{AV)^]A<f = ;-^| - h€i). (I + 2eth). (/i| - het)]Aq* 

[I + hÄn6v - hei(AV)v]A<r' = ■hj - h€i), (I + 2eth). (hj - hti)]Aq" 

[I + hÄn6c - /iet( AV^jAf1 = [{-h^ - he,), (I + 2eth). (}£ - /i£,)]A<f 

3.4 Bernoulli Equation 

If the flow is steady, inviscid, adiabatic, the Bernoulli equation can be derived 

from the Croco relation and perfect gas relations (Anderson et al., 1984): 

P 
Poo 

1 + 1-J- I ML - 2 U2 +V2 + W2 

oo a oo 

,-{s-*oo)/R 

For irrotational flow, the entropy correction term, e  (* 3«>/Ä. can be dropped. To 

avoid computational cost this is expanded using the binomial expansion: 

P       M j.   \n     i j_        , n(n-l)   2^ n(n-l)(n-2)   3 ,  = (1 ± a)   = 1 ± an H a  ± — a   + ... 
Pnn 2 2x3 

where 

n = 1/(7-1) 
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a = ■!-—-    Mi - 
7-1 (%,2      u2 + v+w< 

*l 
Written as 

(n-1), (n-2), (n-3)      „v 

or 

n-L.   ^      I.L   /    , ,#n(n-l)  , ^n(n-l)(n-2)        n(n - l)(n - 2)(n - 3) 
(l+a)n = l + a(n + a( +a( +a — ))) 

or 

(1 + a)n = 1 + a(ci + a(c2 + a(c3 + 004))) 

where 

1 
c\ = 

Therefore 

7-1 

Cl t    1 1 \ 

2 7 — 1 

c3 = v  r-2) 
3 7 — 1 

C4 = -r  r -3) 
4 7-1 

— = 1 + a(ci + a{c2 + a(c3 + acA))) 

3.5 Boundary Conditions 

Boundary conditions are taken from a vorticity/tangency inviscid relation. 

From the vorticity definitions: 

Cy™C - C*«C = Pi = Wi - (£yW£ + 7/yU),, - £ZU$ - TfcV,) 
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G"< - Ci"'C = 92 = u2 - (£2u{ +12^- did; - 7/itü,,) 

Cx<-'C - Cy^C  = i73 = ^3 - (6r^ + ^'l'l ~ (y^ ~ ^y'^r,) 

On the wall, these equations can be written as 

Cy«' -<**> = -ACsi + Cyw" - <**>* = 9\ 

C,zU - CXW = -A(£2 + CzW* - CxW* = h 

Qxv- CyU = -A(p3 + (xv* - (yU* = gz 

where u*.v* and w* are values of u.v, and w at AC above the wall. 

The condition on the surface £ = o is given by 

Solving these four equations for the three unknowns u. v, and iy on the surface by 

generahzed inverse (or using the vorticity relations to remove the other components 

from the tangency relation) gives the vorticity/tangency relations: 

«*+Cy+0 = CzS2-CyS3 

(Cx+Cy+Cz> = Cx93-Cz5l 

(Cx>Cj+Cz2)™ = Cy5l-Cx92 

or in vector form 

(Cx+Cy+Cz2)<f=-VC*f 
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4.0 VERIFICATION AND APPLICATION 

4.1 Potential Solution for Flow around a Sphere 

The ideal flow over a sphere is given by the superposition of a uniform stream 

and a doublet. The stream function of these contributions can be written as: 

0 = ^r0
2Usin29 

-i 

in which TQ is radius of the sphere, and it is easy to verify that for arbitrary 9. 

r — r0 is a spherical stream surface where -ip = 0. The velocity components for this 

flow are: 

Vr = Ucos9   1 - 
ro, 

Ve = --UsinB 

on the surface of the sphere the velocity is 

>+ik 

q = Ve = —-UsinO 

The maximum occurs at the equator, where q = -3U/2. The surface pressures are 

found by Bernoulli's equation on the surface of the sphere, in terms of the pressure 

coefficient, the result is 

Cv = 1 - -sm29 
4 
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We can transfer the solutions (Vr. Vg) in spherical coordinate system to (u. v. w) 

of Cartesian coordinate system with following relations: 

T =   \J X2 + y2 + Z2 

X 
cos9 = - 

T 

sinö = v 1 - cos2 9 

y cosip = 

sintl> = 

rsin9 

z 
rsin9 

then: 

u = Vrcos6 + Vffsin^ 

v = Vrsin9cosip + Vgcosöcosip 

w = Vrsin\9sintl) + Vecos9sinil> 

With these relations, for any given grid point position (x,y,z), it is easy to have the 

potential solution u,v, and w. 

4.2 Solutions for Flow around a Sphere in Single Grid 

Because the analytical solution for a potential flow around a sphere is available 

for comparison, and the sphere grid is relatively easy to generate, the flow pass 

a sphere was selected as the model to verify the simple inviscid flow solver given 

above.   Theoretically, the flow solver given above should give the same result as 
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potential flow solution as long as the vorticity terms disappear from the source terms in 

equation (1). The Mach number contours on sphere surface and a cross section in 

computational space are given in Figure 10 through 13. All of these results show good 

agreement with the analytical results, therefore, it was concluded that the codes were 

functioning properly. 
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4.3     Flow Solutions with Multioverset Grids 

Since the simple inviscid flow solver and connecting codes are working, it is 

necessary to test these codes by calculating relative complex geometric configurations. We 

have a hyperbolic surface grid generation program and the 3-D hyperbolic grid generation 

program. For a complex multibody configuration, it is not too difficult to use these grid 

generators to generate 3-D grid on each body, and superimpose them together, and use the 

Chimera method to solve the whole problem. Even just using the simple inviscid flow 

solver, it still can get some good approximate results which would be very useful for 

further complex and detailed calculations, such as solving boundary layer or Navier Stokes 

equations. It is not difficult to introduce different flow solvers for different domains or 

meshes, which could treat very complex problems both in geometry and flow properties. 

This is an important advantage of Chimera method. 

Figures 14 and 15 show the Mach number contours of the solution of a flow over a 

sphere covered by four pieces of grid, at two different Mach numbers. One is at M„ = 0.2 

and the other is at its critical Mach number M„ =0.55. Both figures show good 

agreement with potential solutions. 
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Figure 10. Potential Solution on a sphere Surface 
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Figure 11. Numerical Solution on a sphere Surface. 
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Figure 12. Potential Solution a sphere a Symmetric section 
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CONTO! 

Figure 13. Numerical Solution on a sphere (a Symmetric section) 
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Figure 14. Mach Number Contour on Sphere Surface for four grids at M_ - 0.55 
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Figure 15. Mach Number Contour on Sphere Surface Interpolated from Four Grids 
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4.4 Flow Solutions with Two-Body Configurations 

In general, for complex multibody configurations problems, there will be some 

holes in the mesh when the solid bodies are embedded in the mesh. The simples 3-D case 

is two spheres next to each other, and each grid is embedded in the other grid, as shown in 

a two-dimensional cross section in Figure 16. There is a hole in each mesh where the other 

sphere bodies are embedded. Figure 17 shows the velocity vectors in a symmetric section 

of the flow field for the two spheres. Two spheres and ellipsoids placed next to each other 

are also calculated as a test case at M. =0.20, which is in Figure 18 through 20. Both 

results are reasonable, therefore, it is possible to say that the code can handle multibody 

configuration problems. 
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5.0 CONCLUDING REMARKS 

A complete computer code has been described that implement 3-D grid-embedding 

techniques as a part of a flexible solution concept that we have called a Chimera method. 

The code utilize procedures for combining grids, locating embedded boundaries and 

interpolation points, and manipulating complex data structures. The validity of the method 

was successfully demonstrated on several geometries for inviscid flow. 

A simple and robust algorithm for steady inviscid flow, in terms of primitive 

variables, is described for body fitted coordinates. This algorithm has been adapted for the 

Chimera framework for the calculation of complex geometric problems. The flow about a 

sphere and an ellipsoid, for both single and overset grids, showed good agreement with the 

exact solution for subcritical and critical cases. Comparison with an implicit Euler solver 

for the flow about an ellipsoid showed the computational advantages of the present method. 

Therefore, the flow solver presented here could possibly be quite useful for preliminary 

engineering analysis. 
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